THE REINSURANCE ACTUARY
  • Blog
  • Project Euler
  • Category Theory
  • Disclaimer

MLE of a Uniform Distribution

28/2/2023

 

I noticed something surprising about the Maximum Likelihood Estimator (MLE) for a uniform distribution yesterday.

Suppose we’re given sample $X’ = {x_1, x_2, … x_n}$ from a uniform distribution $X$ with parameters $a,b$. Then the MLE estimator for $a = min(X’)$, and $b = max(X’)$. [1] All straight forward so far.

However, examining the estimators, we can also say with probability = 1 that $a < min(X’)$, and similarly that $b > max(X’)$. Isn't it strange that the MLE estimators are clearly less/more than the true values? 

So what can we do instead?
Picture
(Since Gauss did a lot of the early work on MLE, here's a portrait of him as a young man. )
Source: https://commons.wikimedia.org/wiki/File:Bendixen_-_Carl_Friedrich_Gau%C3%9F,_1828.jpg
Clearly, asymptotically $min(X’) -> a$ as $n -> inf$. But it’s interesting that the MLE method is unwilling to ‘extrapolate’ and provide us with an $a$ which is greater than the current minimum observed in the sample.

In order to do something along this lines, instead of looking at the MLE, we can instead generate an unbiased estimator, using the following: [2]
$$\frac{(n+1)}{n} max(X’)$$

Using this estimator, we are 'projecting out' that sample by the scaling factor $\frac{(n+1)}{n}$, which feels very sensible to me. Intuitively I’m much more comfortable estimating $(a,b)$ using this unbiased estimator rather than the MLE. Yet, I guess I’ve internalised the idea that the MLE is the ‘best’ estimator to use for a given problem. Turns out this may not always be the case, in particular for small samples sizes, where the scaling factor may be quite material.
  
[1] https://www.mathworks.com/help/stats/uniform-distribution-continuous.html
[2] https://math.stackexchange.com/questions/2246222/unbiased-estimator-of-a-uniform-distribution

Your comment will be posted after it is approved.


Leave a Reply.

    Author

    ​​I work as an actuary and underwriter at a global reinsurer in London.

    I mainly write about Maths, Finance, and Technology.
    ​
    If you would like to get in touch, then feel free to send me an email at:

    ​LewisWalshActuary@gmail.com

      Sign up to get updates when new posts are added​

    Subscribe

    RSS Feed

    Categories

    All
    Actuarial Careers/Exams
    Actuarial Modelling
    Bitcoin/Blockchain
    Book Reviews
    Economics
    Finance
    Forecasting
    Insurance
    Law
    Machine Learning
    Maths
    Misc
    Physics/Chemistry
    Poker
    Puzzles/Problems
    Statistics
    VBA

    Archives

    March 2023
    February 2023
    October 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    October 2021
    September 2021
    August 2021
    July 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    May 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    April 2019
    March 2019
    August 2018
    July 2018
    June 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    April 2016
    January 2016

  • Blog
  • Project Euler
  • Category Theory
  • Disclaimer